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THE MAGNETIC FIELD OF A LINE CURRENT IN A

TRANSVERSE RAREFIED PLASMA STREAM

By Albert G. Munson

SUMMARY

The steady-state flow of an infinitely conducting, rarefied, neutral

plasma past a line current is considered. According to the Chapman-Ferraro

theory, the plasma is confined to the exterior and the magnetic field to

the interior of a cavity, the boundary of which is a thin current sheath.

Within these restrictions the problem is solved exactly by a method similar

to the hodograph method of incompressible fluid dynamics, and the magnetic

field inside the cavity is presented. The boundary so obtained agrees with

that previously given by Hurley who used a different method. Also, the

magnetic field inside the cavity is determined by means of an approximate

solution for the cavity shape previously obtained by Ferraro. Results of

the approximate and exact solutions are compared.

INTRODUCTION

Chapman and Ferraro, in studies of the connection between solar

activity and geomagnetic storms, have considered the idealized problem of

a rarefied neutral plasma stream interacting with a permanent magnetic

field. Under these conditions the permanent field does not penetrate the

plasma but has the effect of producing a hollow or cavity in the plasma.

The steady-state formulation of this problem is summarized by Dungey

(ref. i). Several investigators have applied this formulation to the

interaction of a plasma with a two-dimensional dipole (refs. 2, 3, 4).

The recent evidence that a ring current flows in the magnetosphere

has given impetus to the study of the interaction of a plasma with a two-

dimensional line current (see ref. 5)- Ferraro (ref. 6) and Hurley (ref. 7)

have initiated such studies recently. The former obtained an approximate

expression for the boundary between the stream and the magnetic field, and

the latter an exact one. The present paper applies the formulation of

Hurley and Ferraro to the exact and approximate magnetic fields inside the

cavities. Inasmuch as the approximate formulation of Ferraro has been

applied to three-dimensional problems by Beard (ref. 8), and Spreiter and

Briggs (ref. 9), extensive comparisons of the exact and approximate
solutions are made.



FORMULATIONOFTHEPROBL_

It is considered (ref. l) that the particles in the stream travel up
to the boundary of the hollow in straight lines and are in effect reflected
specularly. In so doing, each particle imparts to the surface twice its
normal componentof momentum. This change in momentumis balanced by the
magnetic pressure at the boundary surface. Onethus obtains

Hs 2

--= Po cos2_ (la)
8_

Po = 2mnv2 (lb)

where H s is the total magnetic field at the boundary surface; m, n, and

v are the mass, number density, and velocity of the positive ions in the

undisturbed stream; and m is the angle between the stream and the normal

to the surface as shown in figure 1. Because no part of the surface may

be shielded from the stream, cos _ must lie between zero and unity.

The condition that the magnetic field does not penetrate the plasma

means that at the boundary surface the magnetic field must be tangent to

the surface, that is,

(2)
_:x

where x and y are two-dimensional rectangular Cartesian coordinates

(see fig. l) and Hx and Hy are the x and y coordinates of the magnetic
field.

The equations to be satisfied inside the cavity are:

o (3)-- 4"

_x ;y

and

(4)
_x _y
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The field components must approach the appropriate values at the llne

current, that is,

ra

21x
rV

where r2 = x2 + ya and I is the current carried by the wire. In the

above the current is considered to flow out of the paper, and is measured

in abamps, and the field is measured in gauss.

THE EXACT SOLUTION

Predictions as to the nature of the physical problem can be made once

equations (3) and (4) have been solved subject to the boundary conditions

of equations (1), (2), and (5) (with the restriction that cos m is

greater than zero). The main difficulty in obtaining a solution to the

equations in their present form is that conditions (1) and (2) must be

satisfied on an unknown boundary. To state this another way, the boundary

must be determined so that (1) and (2) are both satisfied on it. It will

now be shown that, when independent and dependent variables are inter-

changed, the boundary becomes known. Before this is done, however, it is

convenient to introduce a potential function.

If we introduce the complex function W, that is,

W = ¢ + i_

where ¢ is a potential function and _ a stream function 3 and define

Hx = _--_ = _-_ (6a)
_x By

Hy = 3! = _ (6b)
By 3x

equations (3) and (4) become

32¢ + 32¢ 0 (7a)

3x a 3y a



_x2 _ya

Equations (6) are recognized to be the Cauchy-Riemann equations; thus W

is an analytic function of the complex variable z = x + iy (see ref. i0).

Similarly, equations (3) and (4) are the Cauchy-Riemann equations for the

complex function H* = Hx - iHy, and H* is also an analytic function
of the complex variable z. Equations (7) can be combined into

_2w + _2w : o (8)
_x2 _y2

A result of complex function theory which can be shown by direct substi-

tution (making use of eqs. (3), (4) and (6)) is that if x and y are

replaced by Hx and Hy, equation (8) becomes

_2--K-w+_2-N-w: 0 (9)

_Hxa _Hy2

The boundary conditions, equations (I) and (2), will now be combined into

a single relation involving only the component of the magnetic field.

From figure i

Alternatively,

-cot _ = dy = Ey (lO)

ax _x

COS C_ = ]_

2 +

Substituting into equations (i) and simplifying, we have

(il)

_x 2 + :_ya = +(8_o)1/2 _Iy (i2)

where the positive sign is chosen because Hy is always positive on the
boundary. Equation (12) then becomes

Sx2 + [_y - (2_o)_/2] 2 = 2_ o (13)
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This is the equation of a circle as shown in figure 2. The condition

stated in equation (5) can be expressed in terms of W and the magnetio

field as follows. Near the wire

W _ -2iI logz (14)

where I is the current carried by the wire. Equation (9) in complex

notation is

_ 2i_!I
z

Substituting into (14) we have, for large H*

(16)
W _ 2iI log 2I

The boundary value problem has now been transferred into a fixed boundary

value problem. It is now necessary to seek a solution to equation (9)

which will satisfy the condition that the field is tangent to the curve

given by equation (13) and will satisfy (16) for large H*. It will be

recognized that this is analogous to a circular flow which at infinity

approaches a vortex flow.

It seems desirable, before obtaining this solution, to point out

aspects of the method which apply to other two-dimensional problems. For

any enclosed current systemp such as a dipole, a relation, such as equa-

tion (16), can be obtained relating the magnetic field to the complex

potential W. Equation (13) applies to any two-dimensional problem to

which (I) and (2) apply. In more complicated problems, however, it is

not possible to choose a single sign in this equation as was done above.

The boundary therefore becomes a circle plus arcs of another circle. Thus

any two-dimensional problem can be reduced to a fixed boundary value prob-

lem in the "magnetic" plane. It may happen, however, that the mapping

from the physical plane to the magnetic plane is not one to one; that is,

two or more points in the physical plane may map into the same point in

the magnetic plane.

The solution to the present problem can now be written by analogy

with vortex flow, that is,

W=2Ii log [:Ll_*- 2I(2_'*°?)I/21j (17)
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Since

dz

an expression involving only W and z can be obtained by solving equa-

dW
tion (17) for H*_ equating this to --, and integrating. The result is

dz

z 41 log Ii + (8n_PQ)I/2 i W 1
- e (19a)

(8_o) •/2 41

or, separated into real and imaginary parts,

4I
x + iy - log

(8_o) if2

+ (_0' -e 21 cos ¢

41

e 21 sin

+i
4I

(8_oo)_12 _ i
e 2I sin _

tan-l 41 21 (19b )

(8_o)_/2
(8_o) I/21 + e 2I cos ---¢

4I 2I

Since lines of constant @ are field lines, they can be determined if

particular values of @ are chosen and z is calculated for various

values of _. In particular, the open field ]ine, which is the boundary,
can be determined from

(8_o)_j2 _ _t
e 21 : 1 (20a)

4I

since this produces a curve that approaches infinity in the negative x

direction. Substitution of (20a) into (19) leads to



_-) _ (2Oh)(8_Po)ila (x + iy) = 8 log cos + i 4-_
4I

This is identical to the boundary previously determined by Hurley (ref. 7).

The value of the field function at the nose of the boundary (and indeed on

the complete boundary) is from equation (20a)

_N = -2I log
4I

(8_po)_za
(21a)

The difference in the values of _ associated with two field lines

represents the magnetic flux passing between them. Therefore the flux

passing between any field line and the boundary is

An expression for the components of the magnetic field can be obtained by

inverting equation (17). The result is

-sin! cos _y
Hx + iHy = 2(8_Po )I/a 21 + i +

, e 2I e 2I
41 4I

(22)

The field lines are plotted in figure 3. The variation of the absolute

value of the magnetic field is indicated by means of ticks. The direction

of the field is, of course, tangent to the field line. Coordinates of the

field lines and components of the magnetic field are given in table I.

It was convenient to use stretched polar coordinates, that is,

= k212/ (x2 + y2):_/2
(23a)

e = tan -I Z (23b)
X

The components of the magnetic field are expressed as:

H_ = H x cos £ + Hy sin e

He = -Hx sin e + Hy cos e

(24a)

(24b)



8

TEE APPROXIMATE SOLUTION

If the equation of the boundary field line is known, the problem of

determining the magnetic field inside the hollow becomes a fixed boundary-

value problem; that is, the boundary conditions can be applied on a curve

known beforehand. If an approximate boundary is knewn_ it can be used to

obtain an approximate solution to the problem. It is reasonable to suppose

that if the approximate boundary is close to the actual boundary, the

approximate field _lines will be reasonably close to the actual field lines.

Ferraro (ref. 7) obtained an approximate boundary by assuming that

the total field at the boundary is equal to 2f times the component of

the magnetic field of the wire parallel to the boundary. He then used

equation (1) to relate the known magnetic field to the slope of the

boundary. This led to a differential equation for the boundary shape.
Ferraro's solution is

= _ cot _ (2_a)

where

=x (2_b)
r o

_ _ (25c)
r o

roa - 212f2 (25d)

To

and Po is given by equation (lb). Ferraro, in his original development,

set Po equal to one half the value given in (lb). For a discussion of

this point see reference 9. Ferraro then determined f by requiring that

the magnetic field just outside the nose of the hollow be zero. (Since

the boundary is approximate_ the field everywhere outside the hollow cannot

be set to zero.) He found that f = 0.68 approximately. It is convenient

in the present case to determine f so that the approximate boundary

matches the exact one at the nose. This gives

f = 0.6931 (26)

We nov regard the boundary as known and proceed to calculate the

field inside it. The differential equation for the field lines is

dy _-_y (27)
_x Hx

If the components of the magnetic field are known, this equation can be

integrated to determine the coordinates of the field lines. The components
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can be determined in two ways since two boundary conditions exist for the

exact problem. The first is equation (1) which specifiesthe value of the

field on the boundary. The other is equation (2) which specifies that the

normal component of the field vanishes on the boundary. Associated with

the given approximate boundary and each of these conditions is a unique

set of field lines. Therefore two different sets of field lines can be

computed inside the approximate hollow. As mentioned earlier, Ferraro

used equation (1) to determine his approximate boundary. It is therefore

more consistent to use equation (1) in conjunction with Ferraro's boundary

to determine the field lines. The magneticfield is made up of the field

caused by the current flowing in the wire and that caused by the currents

flowing in the bounding surface. The currents flowing in the sheet can

be determined by applying equation (1). Since the magnetic field outside

the sheet is zero (nearly zero in the approximate case) and is equal to

(8_Po) I/2 cos _ just inside the sheet_ the currents flowing must be such

as to produce a Jump of this magnitude in the magnetic field, that is,

Hs = P_P_o Ifj = -- cos_ : cos_ (28)
4_ _crO

where j is the current per unit length of the sheet. The Biot-Savart

law can now be used to obtain a relation for the magnetic field induced

by these currents. The result is

r o
2If Y - Y'

Hxl : _r--_ (x - x') 2 + (y - y,)2 dy' (29a)
-xr O

2If __ _r°
= X - X !

- =o (x- V (-y-y,l dy'
(29b)

since ds cos _ = dy, where ds is an element of arc length along the

sheet. The total field can be obtained by adding the field of the wire

to equations (28). If equations (25) are used the field components are:

• Hx _ 1 | -2q

(8_o)Z/2 4f _2 + _2

+ 2_f __ (_ - _')sin2_ '
_ (_ sin _' - n'cos n') 2 + (_ - _')2sin2n' dn1 (30a)
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F

(8_po)_/2 [_2 + _2

- __2f/_ (_ sin _' - _'cos _')sin _' d_'] (30b)_ (_ sin _' - _'cos _,)2 + (_ _ _,)2sln2_,

The field lines can be computed by integrating the equation

= dy = Hy (31)

d_ ax _x

Equation (31) can now be solved by computing Hx and Hy from equations (30)

and integrating numerically. The integrals in equations (30) are free from

singularities except when the integral curve lies on the bounding sheath.

In that case the denominators of the integrands vanish. Because of this

difficulty, the integrals were split into three parts:

___ (_ - B')sina_' ,
(_ sin _' - _'cos _')2 + (_ _ q,)sin2_, am

,(_- _')sin2_'

(_ sin _' - _'cos _')2 + (_ _ _,)2sin2 _,
d_ '

_+ ')sinai'+ - _,)2 _ ,)2sin2_ ' d_' + K I¢ (_ sin _' - _'cos _ + (_

(32a)
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_ (_ sin _' - _'cos _")sin _' d_'
(_ sin _' - _'cos _,)2 + (_ _ _,)2sina _,

=F - 'cos _')sin _'
e (_ sin _' _,)2J_ (_ sin _' - _'cos _ + (_ - ')2sin2_ '

d_ '

where

(_ sin N' - N'cos N')sin N'
+

e (_ sin N' - _'cos N,)2 + (N _ _,)2sin2 N

= .fN+c (N' _ N)sin2N '
KI _N-e (_ sin _' - N'cos N,)2 + (N _ N,)asin2 h

, dN' (32c)

.fN+e (_ sin _' - N'cos _')sin N'
K2 v__g (_ sin _' _'cos _ + (_ -= - ,)2 ')2sin2_ ' d_'

(Bed)

The singularities are now contained in Kl and K 2. They were then

evaluated approximately as follows: The substitution

_' = N+5

was made in equations (32c and (32d), and linear terms in 5 were retained.

This approximation amounts to replacing the actual boundary in the neigh-

borhood of N' = N with a straight segment whose slope is equal to the

boundary slope at N. The resulting integrals can then be evaluated

analytically. Thus K_ and K2 were found to be approximately

~ 1 log (A - + +
K1 2(B a + i) (A _ _ Be)2 + e2

B tan-_ B(A -_) + e(B m + i)

Ba+I A -_

+ B tan-i B(A - _) - e(B + I) (33a)

B +l
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K2 - B log IA - _ + _c)2 + c2 + I
2(_+ i) (a-_ -B_)a + e2 Be+I

t_-_ B(A - _) + _(_ + i)
A-_

i

_+I

where

A -_
(33b)

A = _ cot q (33c)

B = cot _ _ (33d)
sin2_

Equation (31) was then integrated numerically. An approximate field line

was computed corresponding to each exact field line obtained previously.

In every case except for the field llne starting at the nose of the

boundary, the starting point for the integration was chosen so that the

exact and approximate curves coincided on the positive x axis. When

integration was started precisely at the nose of the boundary, numerical

difficulties arose. It was found, however, that integration could be

started just inside the boundary. The starting value chosen was 0-99999

times the x coordinate of the nose. Small variations in the starting

point did not affect the resulting field line appreciably. Results of

the calculation are compared with the exact solution in figure 4 and are

given in more detail in figure 5. In figure 5 the magnitude of the mag-

netic field is indicated by means of ticks. The magnetic field strengths

indicated on the bounding field line were calculated just inside the

boundary. Numerical results for coordinates and magnetic field components

are given in table II. As in the exact case it was convenient to use

polar coordinates. They are related to _ and _ by

F = f(_2 + _2)I/a (34a)

@ = tan-1 _) (34b)

The components of the magnetic field, HFand He_ are related to Hx and

Hy by equations (24).

The magnetic flux passing between the nose of the boundary and any

field line can be computed as follows. From equation (6b)

4Y=_-¢_: _ydx' (35)



where xN is the x coordinate of the boundary nose and x
point in the field. Substituting from equation (2_b) gives

13

is any

(36)

The integration was carried out numerically for each field line computed

and the results are given in table II.

RESULTS AND DISCUSSION

An exact solution for the interaction of a neutral rarefied plasma

stream with the magnetic field of a line current has been presented.

Although the shape of the boundary has been obtained previously, the

magnetic field is presented here for the first time. The method employed

is applicable in part to many such two-dimensional problems. The magnetic

field inside Ferraro's approximate boundary has also been determined. It

follows from a comparison of the boundaries that the numerical value for

f obtained by Ferraro is extremely close to the value one obtains by

matching the approximate with the exact boundary at the nose. From

figure 4 it can be seen that exact and approximate field lines which begin

at the same point remain extremely close together in the upstream portion

of the figure. In the downstream portion the most serious divergence

between pairs of field lines is that between the exact bounding field line

and the approximate field line which almost coincides with it at the nose.

In this case the approximate field line forms a closed curve while the

exact one goes to infinity in the negative x direction. Since the

approximate field line is not altered significantly by slight variations

in the starting point of the integration, it is concluded that this diver-

gence is not due to a numerical difficulty but is inherent in the approxi-

mation. It can be seen from figures 3 and _ (or tables I and II) that in

the upstream part of the figure the magnetic field strengths on corre-

sponding field lines are very nearly the same. The disagreement in the

downstream part of the figure is due mainly to the divergence of the field

lines themselves.

It has been shown above that the approximate field lines, with the

exception of the one starting at the nose, agree with the exact ones to

the same order (but opposite sense) that Ferraro's approximate boundary

agrees with the exact one. The disagreement of the approximate field

lines with the exact ones is a result of the disagreement of the approx-

imate boundary with the exact one and not a result of the numerical

computation scheme.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Aug. i0, 1962
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TABLE II .- APPROXIMATE SOLUTION FOR MAGNETIC FIELD LINES

AND FIELD COMPONENTS INSIDE SHF_ATH

1 1
Approxlmate sheath _ _ _ 0 T _ = 0"2430

0 0.6931 0.9724 0.0000 0.6951 0.9727 0.0000 0.6326 1.0382 0.0OO0

i0 ,6960 .9691 .0_65 .6961 .9630 .0468 .6351 1.0304 .0469

20 .7067 .9372 .0911 .7091 -9365 ._922 .6427 1.0071 .0918

30 .7251 .8966 .1318 .7204 ,8990 .1329 -6557 -9693 .1328

40 .7521 .8416 .1671 .7426 .8516 ,1712 .6742 .9182 .1683

50 ,7888 .7738 .1954 .7728 ,7853 .2001 .6990 .8556 .1968

60 .8373 -6956 .2155 .8115 .7148 .2194 -7306 .7843 .2177

70 .9003 -6093 .2264 .8588 .6277 -2099 -7695 .7043 .2240

80 .9818 .9180 .2277 ,9146 .5527 -2!59 .8166 .6238 .2260

90 1.0877 .4248 -2192 ,9844 .4741 .2139 -8732 -5427 .2204

lO0 1.2272 .3328 .2015 1.0705 -3955 .2018 .9408 .4635 ._070

ii0 1.4147 .2454 .17% 1.1760 .32O7 .1814 1.0202 ._886 .1868

120 1.6746 .1699 .1431 1.3036 .2530 .1550 1.1119 .3210 .1615

130 2.o51o .o976 ,i067 1.4951 .1947 .1253 1.2148 .2625 .1331

140 2.6323 .0432 .0697 1.6292 .1472 .O950 1,3250 .21h6 .1036

15_ 3-6257 .0052 ,0366 1.8179 .III0 ,0665 1.4347 .1777 .0750

160 2.0001 .0858 .0413 1.5313 .1519 .0482

170 2.1392 .0711 .0195 1.5989 .1368 .0234

180 2.1.9"23 .0662 ,0000 1.6233 .1318 ,0000

1 i- I

_ = 0.4866 _ # = 0.9793 _ _ = 1.4658

0 .5759 1.1140 .0000 .4741 112969 .0000 .3869 1.5315 .0000

i0 .5780 1.1062 .0462 -4755 1,2893 -0449 .3878 1.5241 .0438

20 .58_ 1.0832 .0904 .4799 1.2667 .0880 .3908 1.9019 ,0859

30 -5951 1.0458 .1309 ,4_72 1,2301 .L976 -3957 1.4659 .1248

40 .6105 -9953 .1661 .4975 1.1806 .1621 .4025 1.4173 .1588

90 .6308 .9334 .194_ .5111 1.1200 .1903 .4114 1.3578 .1868

6O .6%5 .8626 .2150 .5279 1.0905 .2109 .&223 1.2893 .2078

70 .6879 .7847 ,2250 .5481 .9745 .2232 .4351 1.2145 .2211

80 .7256 .7041 -2277 .57!7 -8950 .2276 .4499 _.1359 .2268

90 .7700 .6230 .2226 .5988 .8146 .2242 .4664 1.0561 .2249

I00 .8217 .5438 ,2100 ,6292 -7358 .2136 ,4845 .9776 -2159

110 .8g08 ._691 ,1909 .6624 .6613 .i967 .5036 .9030 .2006

i20 .9465 .4014 .1668 .6976 .5932 -1746 .5314 .8200 .1798

130 1.o173 .3426 ,139 _ ._35 .9333 .1487 .5427 .7756 .1549

140 l.O_k)6 -2939 .ii05 .7682 ,4832 .1_03 .5609 .7222 .1268

150 !.!_82 .2561 .0815 ._94 .4437 .0906 .9767 .6814 .0965

360 1.2157 .2294 .0534 .'-q243 .h153 .0604 .5890 .6518 .0649

170 1.2544 .2135 .C'263 ,8h05 .5982 .0302 -5969 -6339 .0326

193 1.26£I ,2083 .0000 .8461 .3926 .0000 -5996 .6279 .0000

i- i 1-

_ = 1.9579 _ _ = 2.9462 _ _ = 4.9336

0 .3133 1.8326 .0000 .2014 _.7151 .0000 .0789 6.5664 .0000

i0 -3139 1-_3 .0_29 .2017 2.7079 .0_16 .0789 6.5594 .OhOl

20 .3158 1.8035 .0842 .2025 2.6866 .0817 -0791 6.5387 .0789

30 -3191 1.76_O .1224 ,2038 2.6520 .1189 .0793 6.5059 .I]52

40 .3235 1.7201 .1561 .2057 2.6051 .1520 .0795 6.4991 .1478

50 .3293 1.6614 .1840 .2080 2-5476 -1799 .0799 6.4028 .1796

60 .3363 1.5938 .2o53 .2]08 2.4812 .2016 ! .0803 6.3376 .1978

70 ,3444 1.5198 .2193 .214o 2.4083 .2]67 ,08o8 6.2698 .2138

80 .3536 1.4&19 ,226o .21_5 2.3312 .2247 .o813 6.1894 .2232

90 -3637 1-3625 .2252 .2213 2.2523 .2255 .0818 6.1108 .2257

t00 .3745 1.2842 .2179 .2292 2.1741 .2195 .0823 6-0325 .2213

130 .3857 1.2094 .2054 .2291 2.0989 ,2070 .0828 9-9569 ,2103

120 -3970 1.1403 .1837 .2_i! 1.9966 .18_8 .0833 5.8861 .1930

130 .4079 1.0788 .1594 .2367 1.9664 ,1650 .O838 5.8224 .1701

140 .4178 1.0264 .1314 -2399 1-9127 .1371 .0842 5.7679 .1423

150 .4263 ,9846 .1007 ._426 1.8695 .i058 .0845 5.7230 ,ii04

160 -4329 .9541 ,0681 .2447 1.8379 ,0719 .0847 5.6904 .0754

170 .4370 .9356 .0343 .2459 1.8186 .0364 .0849 5.6704 .038_

180 ,4384 -9293 .0000 .2464 1.8121 .0000 -0849 5-6636 .0000
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Figure 2.- The sheath in the magnetic plane.
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